Create a results table from a cpam object
Arguments
- cpo
a cpam object
- p_threshold
numerical; threshold for adjusted p-values; default is 0.05
- p_type
character; choose the type of p-value. Options are "p_gam" (default) or "p_mvn" (see
compute_p_values()
for details).- min_lfc
numerical; maximum absolute log (base 2) fold change must exceed this minimum value; default is 0
- min_count
numerical; maximum of the modelled counts evaluated at the set of observed time points must exceed this minimum value for
- aggregate_to_gene
logical; filter by gene-aggregated p-values
- add_lfc
logical; add log (base 2) fold changes for each time point
- add_counts
logical; add modelled counts for each time point
- cp_type
character; model-selection rule used to select the changepoint
- shape_type
character; "shape1" to include unconstrained or otherwise "shape2"
- summarise_to_gene
logical; return gene-level results only
- remove_null_targets
logical; remove targets with null shapes (default is T). If F, targets with null shapes will be included if the aggregated p-value for the corresponding gene passes the specified filtering thresholds.
Details
This function is usually called after
compute_p_values()
, estimate_changepoint
, and select_shape
have
been run. The function has several useful filters such as adjusted p-value
thresholds, minimum log-fold changes, and minimum counts.
Examples
library(cpam)
# load gene-only example cpam object
load(system.file("extdata", "cpo_example.rda", package = "cpam"))
results(cpo_example)
#> # A tibble: 104 × 16
#> target_id p cp shape lfc.1 lfc.2 lfc.3 lfc.4 lfc.5 lfc.6
#> <chr> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 g003 9.26e-319 1 mdcx 0 -0.349 -0.634 -0.856 -1.02 -1.11
#> 2 g013 9.26e-319 3 ilin 0 0 0 0.327 0.655 0.982
#> 3 g055 9.26e-319 1 ilin 0 0.195 0.389 0.584 0.778 0.973
#> 4 g063 9.26e-319 1 cv 0 0.595 0.937 1.03 0.861 0.443
#> 5 g069 9.26e-319 2 ilin 0 0 0.225 0.451 0.676 0.902
#> 6 g090 9.26e-319 2 ilin 0 0 0.239 0.477 0.716 0.954
#> 7 g106 9.26e-319 1 mdcx 0 -0.470 -0.778 -0.892 -0.902 -0.902
#> 8 g126 9.26e-319 1 ilin 0 0.225 0.450 0.675 0.900 1.12
#> 9 g128 9.26e-319 1 ilin 0 0.209 0.418 0.628 0.837 1.05
#> 10 g129 9.26e-319 1 cv 0 0.626 0.979 1.11 1.08 0.888
#> # ℹ 94 more rows
#> # ℹ 6 more variables: counts.1 <dbl>, counts.2 <dbl>, counts.3 <dbl>,
#> # counts.4 <dbl>, counts.5 <dbl>, counts.6 <dbl>
# Add filters
results(cpo_example, p_threshold = 0.01, min_lfc = 1)
#> # A tibble: 22 × 16
#> target_id p cp shape lfc.1 lfc.2 lfc.3 lfc.4 lfc.5 lfc.6
#> <chr> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 g063 9.26e-319 1 cv 0 0.595 0.937 1.03 0.861 0.443
#> 2 g126 9.26e-319 1 ilin 0 0.225 0.450 0.675 0.900 1.12
#> 3 g128 9.26e-319 1 ilin 0 0.209 0.418 0.628 0.837 1.05
#> 4 g129 9.26e-319 1 cv 0 0.626 0.979 1.11 1.08 0.888
#> 5 g171 9.26e-319 1 cv 0 0.593 0.922 1.01 0.901 0.616
#> 6 g186 9.26e-319 1 cx 0 -0.233 -0.324 -0.209 0.219 1.05
#> 7 g331 9.26e-319 3 ilin 0 0 0 0.339 0.678 1.02
#> 8 g334 9.26e-319 1 micv 0 0.402 0.692 0.886 1.00 1.06
#> 9 g341 9.26e-319 1 cx 0 -0.465 -0.593 -0.383 0.164 1.05
#> 10 g393 9.26e-319 1 cv 0 0.432 0.747 0.945 1.02 0.987
#> # ℹ 12 more rows
#> # ℹ 6 more variables: counts.1 <dbl>, counts.2 <dbl>, counts.3 <dbl>,
#> # counts.4 <dbl>, counts.5 <dbl>, counts.6 <dbl>